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Abstract— ITS is a powerful and user-friendly software 

package permitting state-of-the-art Monte Carlo solution of linear 

time-independent coupled electron/photon radiation transport 

problems, with or without the presence of macroscopic electric 

and magnetic fields of arbitrary spatial dependence.  As one of a 

few Sandia applications that are targeted for capability class 

machines like the ASC Red Storm, we have studied extensively 

the performance of this application using thousands of processors.  

We have successfully constructed a performance model and 

verified the model against measurements on a variety of Sandia 

compute platforms.  Use of tools like VAMPIR and PAPI in 

performance analysis and modeling is discussed.   The original 

algorithm for computing the statistical quantities after each batch 

of Monte-Carlo computations has been modified to yield 

improved parallel scaling.  Models of alternate message passing 

algorithms are investigated and validated against measurements 

on the Red Storm. 

 
Index Terms—Performance modeling, performance analysis, 

Monte Carlo Radiation Transport 

 

I. INTRODUCTION 

HE INTEGRATED TIGER SERIES (ITS)  code is an evolving 

Monte Carlo radiation transport code that has been used 

extensively in weapon-effect simulator design and analysis, 

radiation dosimetry, radiation effect studies and medical 

physics research.  Many individuals from the DOE labs and 

NIST have been involved over the years in the development 

and enhancement of ITS [1].  The different features/sections of 

the code in ITS: TIGER, MITS, CEPXS, XGEN etc., are 

applied to an analysis under investigation through the selection 

of appropriate pre-processor directives when the code is built.  

Physical rigor for the analysis is provided by employing 

accurate cross sections, sampling distributions, and physical 

models for describing the production and transport of the 

electron/photon cascade from 1.0 GeV down to 1.0 keV.  The 
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ITS code is capable of analyzing particle transport through 

both  combinatorial geometry models and CAD models.  It 

also has been significantly enhanced to permit adjoint 

transport calculations.    

For the purposes of this paper we have analyzed the 

performance using as input, data from a real satellite model.  

The physical problem solved takes advantage of the MITS 

mutli-group/continuous energy electron-photon Monte Carlo 

transport code’s capability to address realistic three-

dimensional adjoint computations.  The adjoint transport 

method is a powerful technique for simulating applications 

where the knowledge of the particle flux is only required for a 

restricted region of the phase space, but where this knowledge 

is required for source parameters spanning a large region of 

phase space.  The run times for simulations for a complex 

combinatorial geometry model using conventional, or forward, 

transport are prohibitive and hence the adjoint calculations 

used in our satellite model [2].    

 

Our performance analysis of the ITS code was initially 

spurred by the JASONs and NAS review of the ASC programs 

to assess mapping of a set of DOE applications to 

architectures.  Another reason for this investigation is because 

of the large percentage of compute resources ITS code users 

had consumed in the previous years and anticipated similar 

usage in the future.  Recently we investigated the scaling 

characteristics of ITS to tens of thousands of processors.  

Execution time measurements have been obtained on various 

platforms at SNL; ASCI Red, VPLANT (2.4 GHz Xeon 

cluster with Myrinet), ICC (institutional cluster: 3 GHz Xeon 

with Myrinet), CPLANT (Alpha cluster with Myrinet) and 

more recently on the Red Storm.  Our performance model 

attempts to follow a similar approach to that expounded by 

Kerbyson, et.al [4] and in fact follows closely the model 

presented by Mathis, Kerbyson and Hoise [5] in their analysis 

of the MCNP particle transport code.  The model develops an 

analytical expression for the major portions of the execution 

time, namely, computation, communication and I/O.  At the 

present time our expression for the compute time is obtained 

by curve-fitting the plot of the measured execution time vs. the 

number of histories.  For the communication time model we 

focused on the communications at the end of each batch of 

computations assigned to the processors.  This was 

accomplished with the VAMPIR tracing tool to obtain the 

message sizes and messaging patterns and later correlated to 
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the MPI calls in the code.  For the compute platform 

communication characteristics such as bandwidth and latency, 

a set of simple benchmarks were run. The I/O time typically 

been a fraction less than 3% and at the present no model has 

been investigated. 

 

In this paper we present the details of the model and 

compare measured performance against the model for different 

architectures.  We also present results of tests on the new ASC 

Red Storm and use the model to predict performance on it to 

10,000 processors.  The ITS code has been recently enhanced 

to introduce Fortran 90/95 features and in the process it has 

also implemented changes in data structures that would 

improve performance.  As will be seen from the scaling plots 

presented below, ITS can suffer a scaling performance penalty 

depending on how the history computations are split among 

the participating processors and the frequency with which the 

statistical tally of the computations are assembled by the 

master process.  This performance penalty, due to 

communication cost incurred in the many-to-one 

communication at the end of each batch of computation, has 

been remedied by a modified algorithm.  We have investigated 

a simple implementation using MPI collective communication 

calls and measured its performance on the Red Storm.  The 

MPI collective communication calls (based on MPICH 2.0) 

are implemented using a binary reduction algorithm and 

executed using MPI point-to-point operations [6].  We also 

investigate potential improvements in performance that could 

result from using Rebenseifner’s [7] algorithm that promises 

better efficiency when message lengths of varying sizes are 

communicated. 

 

Finally we also present some PAPI hardware performance 

counter results.  We are hoping to use these results in tuning 

single processor performance and in understanding memory 

access patterns of the code to evolve a single processor 

performance model.  We believe our analysis and code 

improvements will enhance the productivity of ITS code users 

and permit effective usage of new ASC capability class 

machines like the Red Storm. There is a strong impetus from 

DOE to push the production use of such systems to utilize 

upwards of 4000 processors on a regular basis.   

II. ITS CODE FLOW AND SATELLITE COMPUTATIONS 

Description of the code and details on using ITS can be 

found in ITS User Guide [7]. In this paper, we present a broad 

outline of the computation phases and the parallelization 

strategy used in ITS  The interaction between particles and the 

physical geometry under consideration is analyzed by tracking 

particle trajectories through the geometry.  Typically there is a 

linear relationship between the number of particle trajectories 

tracked and the execution time once the number of histories 

exceeds a few thousand.  The ability to conduct independent 

computation of particle histories on a geometry replicated on 

every processor, combined with the fact that the statistical 

uncertainty in any Monte Carlo result decreases as the square 

root of the number of histories makes it ideally suited for 

parallel computations.  While there exists particle transport 

codes in which the geometry may also be distributed, like in 

LLNL’s Mercury Code[8], our analysis is simplified because 

ITS replicates the geometry on all the processors.   The basic 

computation steps are as follows: (1) the master processor 

reads geometry, problem input and broadcasts to all the worker 

processes;  the number of histories to be computed is divided 

among the processors and these in turn may be further divided 

into batches to facilitate break up of computations for 

convenience in getting intermediate results and keeping the 

time of computations between batches correlated to the restart 

dumps, (2) the worker processes perform the Monte Carlo 

computations, and (3) the master performs Monte Carlo 

computation and receives and tallies the data after each batch 

of computations for statistical calculations and outputs the 

data.  Thus based on how the problem is set up we could have 

many batches of computations assigned to each processor and 

after completion of each batch there being a communication 

operation of the tally data from the workers to the master.  So 

although there is no communication at all between the worker 

processors, there is many-to-one communication which, based 

on the algorithm used, has significant impact on the parallel 

scaling characteristics.  

 

As mentioned in the introduction this analysis was 

undertaken with a satellite combinatorial geometry model.  

The calculations performed for this work were adjoint point 

estimation of KERMA (Kinetic Energy Released per unit 

MAss).  This simulation is performed by modeling only 

photon physics.  The adjoint solution allows numerous 

radiation sources to be assessed for a single detector.  In this 

case, the detector was measuring energy deposition at a point 

inside of an electronics box.  The forward sources assessed 

were infinite plane-wave sources of photons with a uniform 

energy distribution between 1 and 50 keV.  The average 

response to these sources was calculated for 472 angular bins 

of approximately equal solid angle over all 4p possible 

incident directions.  Figure 1 illustrates the dosage 

computations where the pixels are angular bins of the source 

directions and the levels are dose values at the same point on 

the object. 

 

The combinatorial-geometry (CG) model of the satellite 

comprised of a total of more than 600 CG bodies.  Portions of 

the satellite are approximated as reduced-density materials 

distributed over regions that in reality are a combination of 

void and intricate geometries, but the model is among the most 

complicated CG models that we have available.  Within the 

satellite, an electronics box is more accurately modeled with 

more than 200 CG bodies.  For purposes of this investigation 

we focused on a scaled-speedup analysis (weak-scaling) with 

3.2 million histories assigned to each processor.   
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Figure 1.  Adjoint calculations for the satellite model 

assesses the directions of vulnerability 

III. PERFORMANCE MODEL 

The performance model for ITS parallel computation 

consists of two parts: the computation time model and the 

communication time model.  There is a certain amount of time 

spent in I/O, but for typical calculations running several hours 

this turns out to be a negligible fraction of the total run time.  

Following the approach taken in Ref. [4, 5] the computation 

model is related to an intrinsic parameter of the computation, 

which here is simply the number of particle histories, Nph .  We 

measure this quantity using a single processor on each system.   

The computation model also depends on the geometry and 

therefore such measurements must be carried out for every 

geometry.  For the satellite geometry the relationship between 

single processor execution time and number of histories is a 

linear relationship as shown in Figure 2, for the VPLANT 

Cluster. 

 

From such measurements the computation time can be 

calculated as: 

 

PTNT histphcompute /*”  

 

where Thist, time for a single particle history, is obtained from 

the slope of the line in Figure 2.  P is the number of MPI 

processes taken to be equal to the number of processors. 

 

The communication time can be modeled as: 

 

        tallysetupioncommunicat TTT +=  

Ttally refers to the worker-master communication time after 

each batch of Monte Carlo computations to gather the statistics 

for all the histories computed.  This gather operation in ITS 

was structured as a many-to-one communication resulting in 

the communication time being directly proportional to the 

number of processes used in the computation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Measurement of single processor execution time 

on SNL’s VPLANT Cluster  

 

ITS has as the option of assigning all the history computations 

to the worker processes leaving the master to coordinate the 

computations, this option was not used in our scaling studies.  

Therefore p-1 processes serially send the tally data to the 

master.  The amount of data that is gathered by the master 

processor is related to the output of physical quantities 

requested by the analyst via the input deck and the size of 

these data elements depend again on the problem under 

investigation as they are related to the size of the physical 

arrays.  In ITS the size of most of the important physical arrays 

are controlled through an include file in static fashion.  

Initially in building the model, we used the VAMPIR 

performance analysis tool to obtain the details of the 

communication and later correlated it with MPI calls in the 

code.   

 

 

Figure 3. A VAMPIR summary timeline on SNL’s ICC cluster 

 

One could zoom into the red region in Figure 3 to gather the 

communication details.  For the satellite model under 

consideration the details of the messages between a typical 

worker and the master is captured in Figure 4.     
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Figure 4.  Worker-Master tally data communication calls 

 

As seen from Figure 3, the communication time for setup is a 

small fraction.  Therefore in our model we have chosen to 

ignore it although one could build a model for it following a 

similar procedure.  So the analytical expression for the 

communication time is: 

 

Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } * 

num_batches * (p-1) 

 

Each processor at the end of a batch of computation sends to 

the master a data structure coded in an 8 byte integer array 

called batch_info(6) that signals the master on completion of 

its task and some book keeping information such as the 

execution time for that batch.  The master receives the data 

and using the same data structure instructs the worker process 

to transmit the tally data for the physical quantities ( such as 

TAU, ALINE, etc in the code).  The 432, 368, 48000, and 

16M byte messages corresponding to the various physical 

quantities are then received by the master from each worker 

processor one after another in a serial fashion, from the p-1 

processes. 

 

To compute the different terms in the communication time 

expression above, we measure the point-to-point 

communication time as a function of the message size using 

simple MPI benchmarks.  This measured information, shown 

in Table 1, on bandwidth and latency are used in the 

calculation of the communication time as a function of the 

number of processors and batches.  The total execution time is 

readily tabulated against the number of processors, from which 

parallel efficiency is calculated.  Figure 5 compares the 

parallel efficiency obtained with our model against 

performance measurements on ASCI Red (janus), CPLANT, 

VPLANT and SNL’s institutional cluster – ICC-LIBERTY. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Comparison of  parallel efficiency; Model vs. 

Measurements on ASCI Red, CPLANT, ICC, and VPLANT. 

 

An objective of our performance modeling effort is not only 

to understand performance characteristics of applications, but 

to implement changes in algorithm that would improve 

performance.  Towards this end alternate implementations of 
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the gather phase of the computation using some binary 

reduction algorithms were investigated.  Thakur and Gropp[7] 

discuss efficiency of various algorithms for MPI collective 

operations which are now part of the MPICH release (version 

1.2.6 and higher).  Before we actually implemented a change 

we analyzed the potential improvement in parallel efficiency 

using Rebenseifner’s [8] algorithm.  The expression for the 

reduction operation for this algorithm is given by: 

 

pnpnppT ionscommunicat /)1()1(2)ln(2 gba -+-+=   

 

Here p is the number of processors,   a is the latency, b is 

the message transfer time per byte and g  is the local reduction 

time per byte and n is the message length.  The improved 

scaling that would result from implementing this algorithm is 

seen in Figure 5 for the data corresponding to the VPLANT 

cluster. 

 

Table 1. System parameters used in the computation model 

and comparison of parallel overhead at 512 processors 

System Pt-to-

pt 

BW 

MB/s 

Pt-to-pt 

Latency, 

usec 

Comp 

time, 

secs 

Comm 

time, 

secs 

Overhead, 

Parallel 

Efficiency,  

f & (1/1+f) 

Red Storm 857 7 246.92 19.44 0.078, 0.927 

Janus 330 18 1673 53.20 0.03, 0.97 

ICC 245 6.8 108 69 0.63, 0.61 

VPLANT 209 7.9 156 83 0.53, 0.65 

CPLANT 76 40 334 237 0.70, 0.58 

 

Recently we have applied the performance model to the new 

ASC Red Storm[8] and used the model to predict parallel 

efficiciency to 10000 processors.  ITS code has also recently 

undergone major rewrite to take advantage of the new 

FORTRAN 90/95 features.  This rewrite has created new data 

structures that has facilitated investigation of the alternate 

message passing scheme to replace the O(p) dependent 

communication scheme to O(ln(p)) communication algorithm.  

In Red Storm the currently installed MPI software based on 

MPICH takes advantage of the improved collective 

communication calls.  So the code was modified to simply use 

MPI collective operations.  The results of this improvement 

can be seen with measured parallel efficiency curve with the 

‘new code’ in Figure 6.   If the calls to MPICH collective 

operations are replaced with Rabenseifner’s MPI collective 

algorithm we should see further improvement in performance 

as it promises to be more efficient with both long and short 

messages.  Measurements and models with alternate 

algorithms will be included in the final presentation .   
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Figure 6. Red Storm; model and measured data showing 

improved performance with the ‘new code’ 

IV. PAPI ANALYSIS AND SINGLE PROCESSOR TUNING 

Using the new ITS F90/F95 code we have instrumented the 

code to get hardware performance counter information using 

PAPI.  PAPI analysis shows that ITS has only a small 

percentage of the instructions that are floating point operation 

operations.  Moreover, the nature of the particle trajectory 

computations has a lot of code branching.  This seems to 

suggest that proper speculative execution with profile based 

compiler optimization on the Xeon, Em64T and Opteron 

processors might yield some significant single processor 

performance improvement.  This data is presently being 

collected and analyzed and the final presentation will include 

further discussion on this topic.   

V. CONCLUSION 

We have successfully built and used an analytical 

performance model for ITS to understand it’s performance on 

all of Sandia’s major computational resources.  Our approach 

follows closely the approach expounded by LANL’s PAL 

team.  The performance model and analysis has helped us to 

identify bottlenecks in communication which were limiting the 

scalability of this application.  Along with other code 

improvements we have modified the communication algorithm 

permitting good scaling of this application to O(10K) 

processors.    
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